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Abstract :  
With the growing interconnection of technologies in 
warfare scenarios, devices in the IoBT have become 
integral to modern-day military operations. And yet, 
this rising interconnectivity exposes such systems to 
greater cyber threats, particularly malware sophisticated 
enough to disrupt missions or steal sensitive 
information. A robust malware detection solution for 
IoBT devices is proposed in this paper, which leans on 
deep Eigenspace learning to detect malicious behavior 
at the very core. The system models software execution 
from discrimination-point code execution sequences-
the operational code or OpCode-as program behavior 
into a highly feature-rich vector space. The deep 
learning model proposed detects very small 
discrepancies from benign software behavior to detect 
malicious intent and accurately classify any given 
software as either malware or benign. On top of this, the 
model has been put through its paces against common 
evasion techniques such as junk code insertion, 
endowing the model with a high degree of immunity 
while maintaining performance. This will therefore act 
as a scalable and smart way to shore up the 
cybersecurity of battlefield-connected systems. 

Keywords : Internet of Battlefield Things (IoBT) 
,Malware Detection, Deep Learning , OpCode Analysis, 
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I . INTRODUCTION  
The gradual transformation in modern warfare has 

helped popularize smart interconnected systems 

popularly known as the Internet of Battlefield 

Things (IoBT). The systems involve a diverse array 

of battlefield-deployed devices-amongst wearable 

sensors, communication nodes, autonomous 

vehicles, and medical devices-that monitor, share, 

and process data in real-time. IoBT, at the same 

time, increases awareness, operational efficiency, 

and decision-making in war operations. Since these 

devices are enhanced through increased 

interconnectivity and they require less dependency 

on which cybersecurity issues arise, it gives 

important places as targets for opposite agendas in 

a cyber war.  Malware is one of the most common 

threats in the IoBT landscape. Once infected, IoBT 

nodes can start leaking sensitive information, halt 

operations, and even hijack mission-critical assets. 

Because of the strategic value of such systems, 

malware targeting IoBT is oftentimes produced by 

nation-state actors with advanced evasion 

techniques. In such conditions, the conventional 

method of signature-based detection will almost be 

unusable, barring the inability to detect a novel or 

an obfuscated malware variant in action. This puts 

in emphasis the urgent need for intelligent, 

dynamic, resilient malware detection solutions 

aimed at resource-constrained and mission-critical 

situations posed by the IoBT. Our research presents 

the first malware detection framework, employing 

deep Eigenspace learning for recognizing 

malicious behavior on IoBT devices. The principle 

behind this is to analyze the sequences of 

Operational Code (OpCode) which correspond to 

actual instructions a program executes. Once 

executed, the program's OpCodes are extracted 

from the software binaries and mapped into a 

numerical feature space indicative of the 

application's behavioral patterns. With deep 

learning under an Eigenspace framework, the 

method separates malicious code from benign code 

even if the intruder employs heavy obfuscation 
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techniques involving junk code insertion and 

control flow manipulation. The proposed 

methodology is called lightweight, scalable, and 

well-suited to the constraints of an IoBT device. It 

also has the capability to detect known threats with 

very high accuracy and can generalize well for 

unknown malware families. We validate our 

approach via an experiment that features a curated 

dataset of real-world samples of malware and 

benign software, where, for a variety of threat 

models, our method scores very well. In the end, 

this research advances the newly formed field of 

IoBT security by contributing a data-driven, 

practical malware detection solution. The release 

of the dataset to the public continues to sustain 

research and development for the protection of 

next-generation military networks against 

emerging cyber threats. 

II. LITERATURE SURVEY 

In the recent past, many enhancement drives have 
taken place in investigating cyberattacks and 
malware for IoT environments through advances in 
DL and ML. Some approaches have been tried to 
secure IoT systems, mostly restricted by various 
resources and broadly scattered.  Taşcı (2024) has 
introduced another architecture based on DL for 
detection of IoT attacks and malware. It is said that 
this system performs better in terms of accuracy 
and lower false alarm rates compared to the classic 
ML methods. In contrast, Brown et al. (2024) 
developed and fine-tuned DL models for malware 
detection via AutoML, stressing that AutoML 
offers the prospect of minimizing the need for 
manual configuration without in any way affecting 
detection performance. Simultaneously, Neto et al. 
(2024) introduced CICIoV2024 to create a more 
realistic environment for DoS and spoofing attacks 
in In-Vehicle Network to serve as a benchmark for 
intrusion detection developments on CAN buses. 
Ahmad et al.'s (2023) method was an optimized 
ensemble of learning systems using big data 
analytics to detect DDoS attacks in an IoT 
environment. This method is singled out for its 
scalability and for considering that massive data 
streams are at hand.At this point, an innovative 
mention goes to Deng et al. (2023), who developed 
and proposed a malware classification method, 
MCTVD, based on exploiting three-channel image 
visualization of malware binaries associated with 
CNNs in order to achieve high accuracy in 
classification. Android Malware, Calik Bayazit et 
al. (2023) compared DL techniques in detecting 
Android malware, including CNN and LSTM, 
while Shatnawi et al. (2022) followed the other 

ML-based route of static feature analysis, which 
yielded sufficient results at given lower 
computational cost.  Asam et al. (2022) propose a 
novel boosting and squeezing CNN architecture for 
IoT malware detection to emphasize the 
strengthening of feature extraction from traffic 
data, whereas Khowaja and Khuwaja (2021) 
combined Q-learning and LSTM within a deep 
active learning framework for industrial IoT 
environments that can adapt to dynamic threat 
environments. Then, Palla and Tayeb's (2021) work 
focused on deep learning-based detection of Mirai 
malware attacking IoT devices, emphasizing 
lightweight solutions suitable for edge deployment. 
Hence, the study in general shows that DL and 
hybrid ML techniques, along with realistic datasets 
and new architectures, are highly considerate of the 
improvement of cybersecurity in the IoT panorama 
encompassing everything from smart homes to 
industrial and vehicular network domains. 

III. PROPOSED WORK  
This study proposes a unique architecture for 
malware detection in IoBT environments, utilizing 
deep eigenspace learning to identify malicious 
behavior in software execution. Given the 
importance of IoBT devices in modern warfare and 
the facilities offered for cyberattacks on them, there 
is, therefore, the need for an intelligent detection 
system that is lightweight, able to operate in real-
time, and work in resource-constrained 
environments. First of all, the OpCode sequences 
extracted from executable files are analyzed. 
OpCodes represent the primitive operations that 
actually occur during a program's execution and are 
strongly indicative of a program's behavioral 
patterns. Hence, even very slight traces of 
malicious intent are revealed. After the extraction 
of OpCodes, the data is converted into structured 
numerical vectors that constitute the basis of 
behavioral modeling. To deal with this very high 
dimension and increase performance, Eigenspace 
orthogonal projection techniques are applied for 
the reduction of the feature dimension while trying 
to maintain most of the information.  
 

 
 

Fig 1 : Proposed Architecture 
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This transformation allows the highlighting of the 
most relevant patterns so that the deep learning 
framework can distinguish effectively between 
benign and malicious software. Our goal is to train 
a deep neural network that can identify anomalies 
at the behavioral level even when obfuscation 
mechanisms, such as the addition of junk code, 
have been applied.  To a great extent, the idea 
focuses on generalizing to unknown variants rather 
than on known signatures, which makes it more 
adaptive and resilient. The system is tested by an 
eclectic dataset comprising samples of real-world 
and synthetic malware to prove its highly accurate, 
low false positive, and capable detection results 
against a variety of evading mechanisms. Hence, in 
this majority, the proposed system resists the IoBT 
cybersecurity interest in a practical and efficient 
manner. That is, it is scalable, lightweight, and able 
to detect threats timely, thus contributing to safe 
and uninterrupted servicing of battlefield-linked 
devices. 
IV. METHODOLOGY 

The malware detection system for IoBT devices is 
proposed as a pipeline, whose components are data 
collection, OpCode extraction and preprocessing, 
transformation or projection of features to 
Eigenspace, deep-learning training models, and 
evaluation. 
Data Acquisition : One diverse dataset has been 
prepared to include both benign software and 
malware samples pertinent to an IoBT-type 
environment. The malware samples include 
different families, some practicing evasive 
techniques such as junk-code insertion and control-
flow obfuscation. Benign samples are collected 
from trusted sources of IoBT device firmware and 
applications. This dataset becomes the learning-
testing base for the detection system. 
OpCode Extraction and Preprocessing: Each 
software binary undergoes disassembly through 
one of many migration tools (e.g., IDA Pro, 
Radare2) to extract OpCode sequences that 
represent the very actual instructions executed by 
the program. These sequences represent behaviors 
beyond mere signatures matching. The extracted 
OpCodes were tokenized into streams of tokens 
and then encoded into numerical values by 
frequency-encoding or n-gram methods, keeping 
intact the sequentiality of code execution in the 
transformation. Noise reduction techniques are 
applied to eliminate irrelevant or redundant codes, 
thus refining the feature sets. 
Feature Transformation Using Eigenspace 
Learning 

From the highest dimension, the OpCode vectors 

require reduction via a PCA-like technique. This 
step consists of projecting the feature vectors into a 
low-dimensional Eigenspace that preserves 
significant behavioral attributes while muting noise 
and no importance. In contrast, this step is severely 
inefficient for training and deployment on 
resource-constrained IoBT devices. 
Deep Learning Model Training 

Deep learning paradigms, e.g., Convolutional 
Neural Network or LSTM, shall be formulated to 
learn the transformed feature space. The network is 
given training on a labeled software data to 
optimize labeling software as either benign or 
malicious. The focus imported is to generalize the 
detection from known malware such that the model 
is capable of identifying a previously unknown 
threat that behaves anomalously.  
Evaluation 

The trained model gets tested on separate datasets 
composed of normal samples and obfuscation 
samples of the malware. The metrics of accuracy, 
precision, recall, and F1 score are then derived. The 
evasion techniques are further applied to this model 
to check its robustness. The models show high 
detection with almost zero false positives, thus 
making it qualified for deployment on IoBT 
devices. 
 

V.ALGORITHMS 

1. OpCode Extraction  
From each binary Bi extract the sequence of 
OpCodes (machine instructions): 

Si=[op1,op2,...,opk] 
2.Feature Vector Construction 

Convert OpCode sequence to a numerical vector 
using n-gram frequency: 

xi=[f1,f2,...,fd]∈Rd
 

Where fj  is the frequency of the jth n-gram. 
3. Model Training (Random Forest Classifier) 
Let Z={z1,z2,...,zn} be the reduced feature set. 
Train a Random Forest model F with T decision 
trees: 
Each tree tj makes a prediction hj(zi)∈{0,1} 

Final prediction: 
yi = mode(h1(zi),h2(zi) ,...,hT(zi)) 

 

VI.RESULTS AND DISCUSSION 

From the results, we notice that Eigenspace-
dimensionality reduction is successful in extracting 
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discriminative features necessary for malware 
detection; hence, the deep learning model 
generalizes well to obfuscated variants. Its high 
recall maintains a very low number of missed 
detections, which is essential in mission-critical 
IoBT environments. Such a system has the benefit 
of being much more adaptive than traditional 
signature-based system classification schemes in 
new families of malware and evasion techniques. 
Such a low false-positive rate curbs unnecessary 
alerts and conserves battlefield resources, letting 
operators focus on real threats. Hence, a balanced 
performance in detection accuracy, computational 
efficiency, and robustness is bestowed on the 
overall system design, which may be very well 
implemented in IoBT devices constrained on 
resources and thereby improve the cybersecurity of 
battlefield-connected systems. 

 

Fig 2 : Detection Accuracy under Evasion Techniques 

The bar chart visualizes the detection accuracy of 
the malware detection model proposed under 
different evasion methods. Three bars represent the 
accuracy for the baseline case with no evasion and 
the malware samples altered by junk code insertion 
and by control flow obfuscation. The highest 
accuracy of 96.8% is observed while analyzing the 
unobfuscated malware, hence justifying the strong 
baseline performance of the model. With the 
insertion of junk code, the accuracy drops slightly 
to 94.5%, showing some resilience of the model to 
attempts aimed at concealing malicious behavior 
through irrelevant code. Control flow obfuscation 
further diminishes the accuracy to 93.7%, which 
suggests that path alterations do make it harder for 
the system to detect the malware. With detection 
accuracy at above 90% through these evasion 
methodologies, the deep Eigenspace learning 
technique stands proven as strong. It provokes 
confirmation that the model reliably detects 
malware even when the adversaries take evasive 
actions through very complex methods. 

 

Fig  3: Precision, Recall, and F1-Score Comparison 

The line plot shows comparisons of precision, 
recall, and F1-score under various evasion 
techniques. All three metrics are highest without 
evasion and are slightly decreased due to junk code 
addition and control flow changes. Nonetheless, all 
values are above 90%, implying that the model is 
highly accurate; it detects most of the malware and 
raises very few false alarms even when the 
malware is concealed. 

 

Fig 4 : Confusion Matrix Heatmap 

The confusion matrix presents the rate of correct 
classification of malware and benign software. It 
correctly identified 2,400 samples as benign and 
2,425 as malware, with false positives and false 
negatives almost negligible: 100 and 75, 
respectively. This means the model is extremely 
accurate and rarely misclassifies software, a very 
important criteria for keeping IoBT devices secure 
in the field. 
CONCLUSION 

In conclusion ,the proposed robust framework for 
malware detection in Internet of Battlefield Things 
(IoBT) devices using deep Eigenspace learning. 
Since it is based on behavioral patterns, it can 
distinguish between benign and malicious software 
even if the malicious software uses mature evasion 
morphisms such as junk code insertion and control 
flow obfuscation. Using Eigenspace projection to 
reduce dimensionality allows us to retain 
discriminating information, enabling deep learning 
to work under the resource constraints posed by 
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typical IoBT devices. The experiments reveal that 
this approach has a very high detection rate, along 
with superior precision and recall, outperforming 
both traditional signature-based approaches and 
many existing machine learning approaches. 
Moreover, the system maintains its robustness 
against variants of malware that attempt to go 
undetected through irrelevant code insertion or 
control flow manipulation, thus clearly making the 
system applicable to real-world battlefield 
scenarios. The lightweight and scalable nature of 
the framework perfectly fits the deployment on 
plethora of battlefield-connected devices, ranging 
from wearable sensors to autonomous vehicles, and 
hence, in improving at a large scale the cyber 
defense posture of military networks. Further 
release of the curated dataset consisting of benign 
and malicious samples promotes further research 
toward adequately securing the IoBT.  In summary 
, this work puts forward a feasible, adaptable, and 
operationally sound solution for detecting malware 
that meets the peculiarities of an IoBT environment 
requiring the correctness of timelines and the 
integrity of life-critical applications. Therefore, the 
results may serve as a beacon for everyone 
committed to securing the next-generation 
battlefield systems from emerging cyber threats. 
FUTURE SCOPE 

In future possibility is the exploration of hybrid 
methods that include both static and dynamic 
analyses, whereby runtime monitoring of behavior 
and system calls are true complementors to 
OpCode-based detection, thus enhancing its 
accuracy and resilience against zero-day attacks. 
Transfer and continual learning frameworks may 
be considered in the future to keep the model 
abreast of the ever-evolving malware threat 
without undertaking a full retraining. Additionally, 
another interesting avenue is the use of this 
framework for collaborative distributed detection 
of malware across different IoBT nodes. Sharing of 
threat intelligence in a decentralized way would 
lend additional capacity to early warnings for 
coordinated attacks targeting the battlefield 
network. Furthermore, it will be interesting to 
study adversarial machine learning techniques to 
anticipate and counter malware that try to deceive 
these detection models. Expanding the dataset to 
cover more malware families, including tools from 
nation-state actors, should also make this model 
more generalized and robust. Finally, 
implementing the detection system into full-
fledged cybersecurity platforms with automation 
for the various response steps—quarantine, 
alerting, or mission planning adjustments—may 

form the first of the end-to-end protection tailored 
on battlefield requirements. Overall, these future 
upgrades will push the framework to evolve into a 
fully holistic intelligent and resilient solution, 
ensuring the security of IoBT devices in the face of 
the ever too-sophisticated cyber warfare 
challenges. 
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